टोरंटो : कनाडा स्थित वेस्टर्न यूनिवर्सिटी के न्यूरोइमेजिंग विशेषज्ञ मैरीके मुर के नेतृत्व में हुए एक शोध के अनुसार, प्रमुख शब्द कंप्यूटर के रूप में 'रिसेम्बल्स' है. गहरी शिक्षा की शक्ति और वादे के बावजूद अभी तक मानव गणनाओं में महारत हासिल नहीं की है और महत्वपूर्ण रूप से शरीर और मस्तिष्क के बीच संचार और कनेक्शन पाया जाता है. विशेष रूप से तब, जब दृश्य पहचान की बात आती है. इस प्रकार की मशीन सीखने की प्रक्रिया एक स्तरित संरचना में इंटरकनेक्टेड नोड्स या न्यूरॉन्स का उपयोग करती है, जो मानव मस्तिष्क जैसा दिखता है.
कम्प्यूटेशनल मॉडल : मुर ने कहा, 'होनहार होने पर गहरे तंत्रिका नेटवर्क मानव दृष्टि के सही कम्प्यूटेशनल मॉडल से बहुत दूर हैं.' पिछले अध्ययनों से पता चला है कि गहरी शिक्षा मानव दृश्य पहचान को पूरी तरह से पुन: पेश नहीं कर सकती, लेकिन कुछ लोगों ने यह स्थापित करने का प्रयास किया है कि मानव दृष्टि के कौन से पहलू गहन शिक्षा का अनुकरण करने में विफल रहते हैं. टीम ने मैग्नेटोएन्सेफलोग्राफी (एमईजी) नामक एक गैर-आक्रामक चिकित्सा परीक्षण का उपयोग किया, जो मस्तिष्क के विद्युत धाराओं द्वारा उत्पन्न चुंबकीय क्षेत्र को मापता है. वस्तु देखने के दौरान मानव पर्यवेक्षकों से प्राप्त एमईजी डेटा का उपयोग करते हुए मूर और उनकी टीम ने विफलता के एक प्रमुख बिंदु का पता लगाया.
मानव गणनाओं में महारत हासिल नहीं :उन्होंने पाया कि 'आंख', 'पहिया', और 'चेहरे' जैसे वस्तुओं के आसानी से नाम देने योग्य हिस्से, मानव तंत्रिका गतिकी में विचरण के लिए जिम्मेदार हो सकते हैं और इससे अधिक गहन शिक्षा प्रदान कर सकते हैं. मुर ने कहा, 'इन निष्कर्षो से पता चलता है कि गहरे तंत्रिका नेटवर्क और मनुष्य दृश्य पहचान के लिए अलग-अलग वस्तु सुविधाओं पर भरोसा कर सकते हैं और मॉडल सुधार के लिए दिशानिर्देश प्रदान कर सकते हैं.'
पढ़ें : Six Tech Trends For 2023 : टेक कंपनियों के किस ट्रेंड को करें फॉलो, किसे करें इग्नोर, एक नजर
मानव दृष्टी के लिए रिसर्च जारी : अध्ययन से पता चलता है कि गहरे तंत्रिका नेटवर्क मानव पर्यवेक्षकों में मापी गई तंत्रिका प्रतिक्रियाओं के लिए पूरी तरह से हिसाब नहीं दे सकते, जबकि व्यक्ति चेहरे और जानवरों सहित वस्तुओं की तस्वीरें देख रहे हैं और वास्तविक दुनिया की सेटिंग में गहन शिक्षण मॉडल के उपयोग के लिए प्रमुख निहितार्थ हैं, जैसे कि अपना वाहन चलाना. मुर ने कहा, 'यह खोज इस बारे में सुराग प्रदान करती है कि छवियों में तंत्रिका नेटवर्क क्या समझने में असफल हो रहे हैं, यानी दृश्य विशेषताएं जो पारिस्थितिक रूप से प्रासंगिक वस्तु श्रेणियों, जैसे चेहरे और जानवरों का संकेतक हैं.'
पढ़ें : आर्मी का हिस्सा होगी फेशियल रिकॉग्निशन टेक्नोलॉजी, एआई आधारित 75 उत्पादों का होगा प्रदर्शन