ETV Bharat / science-and-technology

On the road to invisible solar panels: How tomorrow's windows will generate electricity

Ever heard of a fully transparent solar cell? No, a new study by scientists from Incheon National University in Korea shows how to make a fully transparent solar cell. Strange but true. In recent decades, solar cells have become cheaper, more efficient, and environment friendly.

how to make transparent solar panels, solar cell
On the road to invisible solar panels: How tomorrow's windows will generate electricity
author img

By

Published : Jan 7, 2021, 1:21 PM IST

Updated : Feb 16, 2021, 7:53 PM IST

South Korea: Five years after the Paris climate agreement, all eyes are on the world's progress on the road to a carbon-free future. A crucial part of this goal involves the energy transition from fossil fuels to renewable sources, such as sun, water, wind, and wave energy. Among those, solar energy has always held the highest hope in the scientific community, as the most reliable and abundant energy source on Earth.

In recent decades, solar cells have become cheaper, more efficient, and environment friendly. However, current solar cells tend to be opaque, which prevents their wider use and integration into everyday materials, constrained to being lined up on roofs and in remote solar farms.

But what if next-generation solar panels could be integrated into windows, buildings, or even mobile phone screens? That is the hope of Professor Joondong Kim from the Department of Electrical Engineering at Incheon National University, Korea.

Also Read: Amazon says latest wind and solar deals make it the world's largest corporate buyer of renewable energy

In a recent study published in the Journal of Power Sources, he and his colleagues detail their latest invention: a fully transparent solar cell. "The unique features of transparent photovoltaic cells could have various applications in human technology," says Prof. Kim.

At present, the materials making the solar cell opaque are the semiconductor layers, those responsible for capturing light and translating it into an electrical current. Hence, Prof. Kim and his colleagues looked at two potential semiconductor materials, identified by previous researchers for their desirable properties.

The first is titanium dioxide (TiO2), a well-known semiconductor already widely used to make solar cells. On top of its excellent electrical properties, TiO2 is also an environment-friendly and non-toxic material. This material absorbs UV light (a part of the light spectrum invisible to the naked eye) while letting through most of the visible light range.

The second material investigated to make this junction was nickel oxide (NiO), another semiconductor known to have high optical transparency. As nickel is one of the most abundant elements on Earth, and its oxide can easily be manufactured at low industrial temperatures, NiO is also a great material to make eco-friendly cells.

Also Read: How our brains make us

The solar cell prepared by the researchers was composed of a glass substrate and a metal oxide electrode, on top of which they deposited thin layers of the semiconductors (TiO2 first, then NiO) and a final coating of silver nanowires, acting as the other electrode in the cell. They ran several tests to evaluate the device's absorbance and transmittance of light, as well as its effectiveness as a solar cell.

Their findings were encouraging; with a power conversion efficiency of 2.1%, the cell's performance was quite good, given that it targets only a small part of the light spectrum. The cell was also highly responsive and worked in low light conditions. Furthermore, more than 57% of visible light was transmitted through the cell's layers, giving the cell this transparent aspect.

In the final part of their experiment, the researchers demonstrated how their device could be used to power a small motor. "While this innovative solar cell is still very much in its infancy, our results strongly suggest that further improvement is possible for transparent photovoltaics by optimizing the cell's optical and electrical properties," suggests Prof. Kim.

Also Read: Microorganisms or microbes in our day to day life

South Korea: Five years after the Paris climate agreement, all eyes are on the world's progress on the road to a carbon-free future. A crucial part of this goal involves the energy transition from fossil fuels to renewable sources, such as sun, water, wind, and wave energy. Among those, solar energy has always held the highest hope in the scientific community, as the most reliable and abundant energy source on Earth.

In recent decades, solar cells have become cheaper, more efficient, and environment friendly. However, current solar cells tend to be opaque, which prevents their wider use and integration into everyday materials, constrained to being lined up on roofs and in remote solar farms.

But what if next-generation solar panels could be integrated into windows, buildings, or even mobile phone screens? That is the hope of Professor Joondong Kim from the Department of Electrical Engineering at Incheon National University, Korea.

Also Read: Amazon says latest wind and solar deals make it the world's largest corporate buyer of renewable energy

In a recent study published in the Journal of Power Sources, he and his colleagues detail their latest invention: a fully transparent solar cell. "The unique features of transparent photovoltaic cells could have various applications in human technology," says Prof. Kim.

At present, the materials making the solar cell opaque are the semiconductor layers, those responsible for capturing light and translating it into an electrical current. Hence, Prof. Kim and his colleagues looked at two potential semiconductor materials, identified by previous researchers for their desirable properties.

The first is titanium dioxide (TiO2), a well-known semiconductor already widely used to make solar cells. On top of its excellent electrical properties, TiO2 is also an environment-friendly and non-toxic material. This material absorbs UV light (a part of the light spectrum invisible to the naked eye) while letting through most of the visible light range.

The second material investigated to make this junction was nickel oxide (NiO), another semiconductor known to have high optical transparency. As nickel is one of the most abundant elements on Earth, and its oxide can easily be manufactured at low industrial temperatures, NiO is also a great material to make eco-friendly cells.

Also Read: How our brains make us

The solar cell prepared by the researchers was composed of a glass substrate and a metal oxide electrode, on top of which they deposited thin layers of the semiconductors (TiO2 first, then NiO) and a final coating of silver nanowires, acting as the other electrode in the cell. They ran several tests to evaluate the device's absorbance and transmittance of light, as well as its effectiveness as a solar cell.

Their findings were encouraging; with a power conversion efficiency of 2.1%, the cell's performance was quite good, given that it targets only a small part of the light spectrum. The cell was also highly responsive and worked in low light conditions. Furthermore, more than 57% of visible light was transmitted through the cell's layers, giving the cell this transparent aspect.

In the final part of their experiment, the researchers demonstrated how their device could be used to power a small motor. "While this innovative solar cell is still very much in its infancy, our results strongly suggest that further improvement is possible for transparent photovoltaics by optimizing the cell's optical and electrical properties," suggests Prof. Kim.

Also Read: Microorganisms or microbes in our day to day life

Last Updated : Feb 16, 2021, 7:53 PM IST
ETV Bharat Logo

Copyright © 2024 Ushodaya Enterprises Pvt. Ltd., All Rights Reserved.