Berlin [Germany]: What enables bones to self-regulate and maintain health? Researchers from Charite Berlin have uncovered information about the essential role of non-collagen protein molecules and how they support the response of bone cells to external loads. To clarify discrepancies in microstructures and the incorporation of water, the researchers employed fish models to investigate bone samples with and without bone cells.
They were able to accurately measure the water diffusion across bone material for the first time using 3D neutron tomography at the Berlin research reactor BER II, with a startling outcome. Around 500 million years ago, early vertebrates in the seas became fish, adopting an inner skeleton and a flexible spine based on a nanocmposite of fibers and mineral, known as bone material. This "invention" of evolution was so successful that the basic structure was also adopted for later vertebrates that lived on land.
However, while the bones of all terrestrial vertebrates are basically equipped with bone cells (osteocytes), certain fish species continued to evolve and finally managed to create a more energy efficient material: bone lacking bone cells, found today for example in fish such as salmon, medaka or tilapia.
Samples with and without bone cells:"We asked ourselves how bone samples with and without bone cells actually differ in their microstructures and properties," saif Prof. Paul Zaslansky, who heads a research group at Charite Berlin and specializes in mineralized biomaterials including teeth and bones.
Together with PhD student Andreia Silvera and international partners, they have now compared bone samples from zebrafish and medaka. Both fish species are of similar size and live in similar conditions, so their skeletons must withstand similar stresses. However, while zebrafish have bone cells, the skeleton of medaka do not.
"The background to the question is that the function of bone cells in bone and how they change with age is of great interest to the aging population," Silvera explains. Bone cells can respond to physical stress by sending biochemical signals that lead to the formation or resorption of bone tissue, adapting to load. But with age or in diseases such as osteoporosis, this mechanism no longer seems to work. "With our basic research, we want to find out how bones with and without bone cells differ and cope with the challenges of external stress," Zaslansky said.
Strength and elasticity:Bones have a complex structure: they comprise nanofibers of collagen and nanoparticles of mineral but also other minor ingredients. Certain protein compounds, so called Proteoglycans (PGs), are embedded in a tissue of collagen fibers and nanocrystals and play important roles in tissue formation and maintenance. "PGs may be compared to salt in the soup. Too little or too much of it is not good," Zaslansky says. The PGs can retain water, and there are plenty of PGs in healthy cartilage, making it as elastic as a sponge. Together, these components form an Extracellular Matrix (ECM), a 3D structure that provides strength and elasticity, ensuring function for many years.