Pennsylvania [US]: Researchers from Penn State College of Medicine and the University of Minnesota conducted a study to see if drugs like dextromethorphan, which is used to treat cold and flu-related coughs, may be repurposed to help individuals give up smoking. In order to find the medications, they created a revolutionary machine-learning technique that uses computer programs to look for patterns and trends in data sets. They claimed that some of the drugs are already being evaluated in clinical trials.
Smoking causes close to 500,000 deaths annually in the United States and is a risk factor for respiratory illnesses, cancer, and cardiovascular disease. While smoking habits can be acquired and unlearned, heredity also affects a person's likelihood of doing so. The researchers found in a prior study that people with certain genes are more likely to become addicted to tobacco.
Using genetic data from more than 1.3 million people, Dajiang Liu, Ph.D., professor of public health sciences, and of biochemistry and molecular biology, and Bibo Jiang, Ph.D., assistant professor of public health sciences, co-led a large multi-institution study that used machine learning to study these large data sets - which include specific data about a person's genetics and their self-reported smoking behaviors.
The researchers identified more than 400 genes that were related to smoking behaviors. Since a person can have thousands of genes, they had to determine why some of those genes were connected to smoking behaviors. Genes that carry instructions for the production of nicotine receptors or are involved in signaling for the hormone dopamine, which makes people feel relaxed and happy, had easy-to-understand connections. For the remaining genes, the research team had to determine the role each plays in biological pathways and using that information, figured out what medications are already approved for modifying those existing pathways.