There’s not much good that can be said about asthma, a breathing disease in which the airways become narrowed and inflamed. But there’s this: People with asthma seem to be less likely to develop brain tumors than others. And now, researchers at Washington University School of Medicine in St. Louis believe they have discovered why.
It comes down to the behavior of T cells, a type of immune cell. When a person — or a mouse — develops asthma, their T cells become activated. In a new mouse study, researchers discovered that asthma causes the T cells to behave in a way that induces lung inflammation but prevents the growth of brain tumors. What’s bad news for the airways may be good news for the brain.
The findings, available online in Nature Communications, suggest that reprogramming T cells in brain tumor patients to act more like T cells in asthmapatients could be a new approach to treating brain tumors.
“Of course, we’re not going to start inducing asthma in anyone; asthma can be a lethal disease,” said senior author David H. Gutmann, MD, Ph.D., the Donald O. Schnuck Family Professor of Neurology. “But what if we could trick the T cells into thinking they’re asthma T cells when they enter the brain, so they no longer support brain tumor formation and growth? These findings open the door to new kinds of therapies targeting T cells and their interactions with cells in the brain.”
The idea that people with inflammatory diseases, such as asthma or eczema, are less prone to developing brain tumors was first proposed more than 15 years ago, based on epidemiologic observations. But there was no obvious reason why the two very different kinds of diseases would be linked, and some scientists questioned whether the association was real.
Gutmann is an expert on neurofibromatosis (NF), a set of complex genetic disorders that cause tumors to grow on nerves in the brain and throughout the body. Children with NF type 1 (NF1) can develop a kind of brain tumor known as an optic pathway glioma. These tumors grow within the optic nerves, which carries messages between the eyes and the brain.
Gutmann, director of the Washington University NF Center, noted an inverse association between asthma and brain tumors among his patients more than five years ago but didn’t know what to make of it. It wasn’t until more recent studies from his lab began to reveal the crucial role that immune cells play in the development of optic pathway gliomas that he began to wonder whether immune cells could account for the association between asthma and brain tumors.