Washington [US]: Adolescence is a time of significant skeletal development. One of the most universal, and sometimes distressing, experiences during adolescence is the development of acne a skin condition that results from the plugging of hair follicles with oil and dead skin cells. For some individuals whose acne is resistant to topical therapies, systemic antibiotics are used to help to alleviate symptoms and clear up the skin.
Treating acne with systemic antibiotics, such as minocycline, often requires long-term use sometimes up to two years; however, the effects of such long-term use of antibiotics are unknown. Researchers at the Medical University of South Carolina (MUSC) show in work published online on Nov. 22 in the Journal of Clinical Investigation (JCI) Insight that there is a strong link between the makeup of the gut microbiome - a community of microorganisms that live together in the gut - and healthy skeletal maturation. Long-term use of a systemic antibiotic, such as minocycline, may have unintended consequences during the critical stage of adolescent bone development.
"There are sustained changes to the gut microbiome following long-term systemic minocycline therapy that lead to reduced bone maturation," said Matthew Carson, first author on this study and graduate student studying the effects of the gut microbiome on skeletal development in the Novince lab. "From a clinical perspective, not only is minocycline treatment causing changes to the maturing skeleton, the microbiome and the skeleton aren't able to recover fully after antibiotic therapy," added Chad Novince, D.D.S., Ph.D., principal investigator and associate professor in the Department of Oral Health Sciences in the College of Dental Medicine.
This work builds off of previous work from the Novince lab that showed a high-dose antibiotic cocktail activated a proinflammatory immune response that increased the activity of bone-eating osteoclasts and impaired bone maturation. Findings from this study led the Novince team to ask if there were clinical scenarios in which systemic antibiotics might have effects on the maturing skeleton.
They learned that physicians prescribe minocycline as a systemic antibiotic therapy to treat adolescent acne. Minocycline is a member of the tetracycline class of antibiotics, which also includes tetracycline, doxycycline and sarecycline. These antibiotics work by preventing the growth and spread of bacteria; in acne, they kill the bacteria that infect pores and decrease certain natural oily substances that cause acne.
To determine if systemic minocycline treatment would have similar effects on the skeleton as previous antibiotic treatments had, Carson and Novince administered a clinically relevant dose of minocycline to mice during pubertal/postpubertal growth - the equivalent age of adolescence in humans. They found that minocycline therapy does not cause any cytotoxic effects or induce a proinflammatory response - as they observed previously; however, there were changes in the composition of the gut microbiome that caused decreased bone mass accrual and impaired skeletal maturation.
In and of themselves, these data highlight an important, but underappreciated, consequence of long-term systemic antibiotic use during adolescence. But they also went on to show that long-term minocycline therapy prevented the ability of the gut microbiome and skeleton to recover to a stable state even after the therapy was stopped. Early research suggested that our gut microbiome develops into a mature state in the first few years of life, but this idea has recently been called into question, with recent investigations showing that the gut microbiome continues to develop into a stable, mature state during adolescence.