New York [US]: In the pancreas, various types of beta cells produce insulin, which aids in blood sugar regulation. According to Weill Cornell Medicine researchers, losing a particularly productive type of beta cell may contribute to the development of diabetes. Dr. James Lo, associate professor of medicine at Weill Cornell Medicine, and colleagues measured gene expression in individual beta cells collected from mice in the study, which was published March 16 in Nature Cell Biology, to determine how many different types of beta cells exist in the pancreas.
The researchers discovered four distinct beta cell types, one of which stood out. Cluster 1 beta cells produced more insulin than other beta cells and appeared to be better at metabolising sugar. The study also found that the loss of these beta cells may contribute to type 2 diabetes.
"Before this, people thought a beta cell was a beta cell, and they just counted total beta cells," said Dr. Lo, who is also a member of the Weill Center for Metabolic Health and the Cardiovascular Research Institute at Weill Cornell Medicine and a cardiologist at NewYork-Presbyterian/Weill Cornell Medical Center. "But this study tells us it might be important to subtype the beta cells and that we need study the role of these special cluster 1 beta cells in diabetes." Drs. Doron Betel, Jingli Cao, Geoffrey Pitt and Shuibing Chen at Weill Cornell Medicine teamed up with Dr. Lo to carry out the study.
The investigators used a technique called single-cell transcriptomics to measure all the genes expressed in individual mouse beta cells and then used that information to group them into four types. The cluster 1 beta cells had a unique gene expression signature that included high expression of genes that help cellular powerhouses called mitochondria to break down sugar and power them to secrete more insulin. Additionally, they could distinguish the cluster 1 beta cells from the other beta cell types by its high expression of the CD63 gene, which enabled them to use the CD63 protein as a marker for this specific beta cell type.
"CD63 expression provided us a way to identify the cells without destroying them and allowed us to study the live cells," he said. When the team looked at both human and mouse beta cells, they found that cluster 1 beta cells with high CD63 gene expression produce more insulin in response to sugar than the three other types of beta cells with low CD63 expression.