New York [US]: Although it has long been believed that the microRNA (miRNA) molecules found in pancreatic islets play significant roles in type 2 diabetes, no specific miRNAs have been definitively linked to the condition in humans. The largest study of diabetes-related miRNAs discovered in human pancreatic islets, which are collections of cells in the pancreas that secrete insulin and control blood glucose levels, has just been released. It was published in the journal Proceedings of the National Academy of Sciences on February 9.
Most prior attempts to comprehensively profile miRNAs (which regulate which genes are turned on and off) in pancreatic islets using next-generation sequencing technology have been done in culture or with rodent models. A few studies conducted with hard-to-acquire human islets were limited by a small number of samples.
The study's corresponding authors, Praveen Sethupathy '03, professor of biomedical sciences in the College of Veterinary Medicine and director of the Center for Vertebrate Genomics at Cornell University, and Dr. Francis Collins, former director of the National Institutes of Health (2009-21) and a senior investigator at the National Human Genome Research Institute at the NIH, had access to a network that supplied nearly 65 human pancreatic islet samples from cadavers for this study.
The robust sample size allowed the researchers to use large-scale, next generation sequencing to identify at least 14 pancreatic islet miRNAs that are implicated in human type 2 diabetes. "We've defined in the largest cohort of human islets to date the miRNAs that might be most relevant for type 2 diabetes," said Sethupathy, who was a postdoctoral researcher in Collins' NIH lab from 2008-11. "We [also] found that some of the diabetes-associated miRNAs in humans are not ones that have been well-characterized in the previous two decades of studying islets and diabetes in rodent models," he said.