National

ETV Bharat / science-and-technology

Early Mars was covered in ice sheets, not flowing rivers

A large number of the valley networks scarring Mars’s surface were carved by water melting beneath glacial ice, not by free-flowing rivers as previously thought, according to new UBC research published in Nature Geoscience

Early Mars was covered in ice sheets, not flowing rivers,UBC research published today in Nature Geoscience
Early Mars was covered in ice sheets, not flowing rivers

By

Published : Aug 5, 2020, 2:57 PM IST

Updated : Feb 16, 2021, 7:31 PM IST

Canada: Lead author Anna Grau Galofre, former Ph.D. student in the department of earth, ocean, and atmospheric sciences (currently a SESE Exploration Postdoctoral Fellow at Arizona State Universit) and her co-authors worked on the research.

Early Mars was covered in ice sheets, not flowing rivers

“For the last 40 years, since Mars’s valleys were first discovered, the assumption was that rivers once flowed on Mars, eroding and originating all of these valleys,” says Grau Galofre. “But there are hundreds of valleys on Mars, and they look very different from each other. If you look at Earth from a satellite you see a lot of valleys: some of them made by rivers, some made by glaciers, some made by other processes, and each type has a distinctive shape. Mars is similar, in that valleys look very different from each other, suggesting that many processes were at play to carve them.”

The similarity between many Martian valleys and the subglacial channels on Devon Island in the Canadian Arctic motivated the authors to conduct their comparative study. “Devon Island is one of the best analogs we have for Mars here on Earth—it is a cold, dry, polar desert, and the glaciation is largely cold-based,” says co-author Gordon Osinski, a professor in Western University’s department of earth sciences and Institute for Earth and Space Exploration.

Collage showing Mars’s Maumee valleys and channels on Devon Island in Nunavut. Credit: Cal-Tech CTX mosaic and MAXAR/Esri.

“These results are the first evidence for extensive subglacial erosion driven by channelized meltwater drainage beneath an ancient ice sheet on Mars,” says co-author Mark Jellinek, a professor in UBC’s department of earth, ocean, and atmospheric sciences. “The findings demonstrate that only a fraction of valley networks match patterns typical of surface water erosion, which is in marked contrast to the conventional view. Using the geomorphology of Mars’ surface to rigorously reconstruct the character and evolution of the planet in a statistically meaningful way is, frankly, revolutionary.”

Early Mars was covered in ice sheets, not flowing rivers

Grau Galofre, currently a SESE Exploration Postdoctoral Fellow at Arizona State University says, “We tried to put everything together and bring up a hypothesis that hadn’t really been considered: that channels and valleys networks can form under ice sheets, as part of the drainage system that forms naturally under an ice sheet when there’s water accumulated at the base.”

While Grau Galofre’s research focused on Mars, the analytical tools she developed for this work can be applied to uncover more about the early history of our own planet. Jellinek says he intends to use these new algorithms to analyze and explore erosion features leftover from very early Earth history.

“Currently we can reconstruct rigorously the history of global glaciation on Earth going back about a million to five million years,” says Jellinek. “Anna’s work will enable us to explore the advance and retreat of ice sheets back to at least 35 million years ago—to the beginnings of Antarctica, or earlier—back in time well before the age of our oldest ice cores. These are very elegant analytical tools.”

Also Read SoundWear' a heads-up sound augmentation gadget helps expand children's play experience

Last Updated : Feb 16, 2021, 7:31 PM IST

ABOUT THE AUTHOR

...view details