Washington: The current solar panels aren't very efficient as they are only able to convert up to about 20 per cent of the sun's energy into electricity. As a result, to generate a lot of electricity, the panels require a lot of space--sometimes leading forests to be cut down or farms being replaced. If solar panels were more efficient, much smaller panels could make the same amount of electricity, and wouldn't claim as much land.
To make solar panels that are more efficient, Lahari Saha, in the lab of Professor Chris D. Geddes at the University of Maryland, Baltimore County, is working to make electricity in a unique way--by harnessing plants' abilities to convert sunlight into chemical energy using biological molecules, like chlorophyll, that excel at absorbing sunlight. Saha will present her work on Wednesday, February 22 at the 67th Annual Biophysical Society Meeting in San Diego, California.
Their goal is to use biological molecules to make electricity that can then be harvested and used to power devices or stored in batteries for later use. The process involves leveraging molecules' fluorescence. "Any sort of molecule that fluoresces, gives off light. If we excite the fluorophore, it can transfer its energy to metal nanoparticles, and if the particles are close enough to each other, they will knock off electrons and generate current," Saha explained.