Washington: A new analysis combined Dark Energy Survey and South Pole Telescope data to understand evolution of universe, according to a new study. A group of scientists, including several with the University of Chicago, US, and Fermi National Accelerator Laboratory, US, have released one of the most precise measurements ever made of how matter is distributed across the universe today, according to the study.
Sometimes to know what the matter is, you have to find it first, said the study. When the universe began, matter was flung outward and gradually formed the planets, stars and galaxies that we know and love today. By carefully assembling a map of that matter today, scientists can try to understand the forces that shaped the evolution of the universe, the study said.
Combining data from two major telescope surveys of the universe, the Dark Energy Survey and the South Pole Telescope, the analysis involved more than 150 researchers and is published in the journal Physical Review D. Among other findings, the analysis indicated that matter is not as "clumpy" as we would expect based on our current best model of the universe, which adds to a body of evidence that there may be something missing from our existing standard model of the universe.
After the Big Bang created all the matter in the universe in a very hot, intense few moments about 13 billion years ago, this matter has been spreading outward, cooling and clumping as it goes. Scientists are very interested in tracing the path of this matter; by seeing where all the matter ended up, they can try to recreate what happened and what forces would have had to have been in play. The first step is collecting enormous amounts of data with telescopes.
In this study, scientists combined data from two very different telescope surveys: The Dark Energy Survey, which surveyed the sky over six years from a mountaintop in Chile, and the South Pole Telescope, which looks for the faint traces of radiation that are still traveling across the sky from the first few moments of the universe. Combining two different methods of looking at the sky reduces the chance that the results are thrown off by an error in one of the forms of measurement.