Washington: Scientists have constructed an in silico, or computer-derived, marker for Coronary Artery Disease (CAD) to better measure clinically important characterizations of the disease, a new study has found. Using machine learning and clinical data from electronic health records, the researchers at the Icahn School of Medicine at Mount Sinai in New York are the first ones to map characteristics of CAD on a spectrum. Previous studies have focused only on whether or not a patient has CAD, the study said.
CAD and other common conditions exist on a spectrum of disease; each individual's mix of risk factors and disease processes determines where they fall on the spectrum. However, most such studies break this disease spectrum into rigid classes of case (patient has disease) or control (patient does not have disease). This may result in missed diagnoses, inappropriate management, and poorer clinical outcomes, said the investigators.
The findings, published in the journal The Lancet, are expected to lead to more targeted diagnosis and better disease management of CAD, the most common type of heart disease and a leading cause of death worldwide, the study said. "The information gained from this non-invasive staging of disease could empower clinicians by more accurately assessing patient status and, therefore, inform the development of more targeted treatment plans," said Ron Do, senior study author, Icahn School of Medicine.
"Our model delineates coronary artery disease patient populations on a disease spectrum; this could provide more insights into disease progression and how those affected will respond to treatment. "Having the ability to reveal distinct gradations of disease risk, atherosclerosis, and survival, for example, which may otherwise be missed with a conventional binary framework, is critical," said Do.
In the retrospective study, the researchers trained the machine learning model, named in silico score for coronary artery disease or ISCAD, to accurately measure CAD on a spectrum using more than 80,000 electronic health records from two large health system-based biobanks, the BioMe Biobank at the Mount Sinai Health System and the UK Biobank.